Prospects of the application of the CRISPR/CAS9 method in fundamental advanced research, diagnostics and therapies of socially significant illness in children and adolescents in Ukraine

Authors

  • Oksana Bobrova V. N. Karazin Kharkiv National University
  • Nataliia Mikhanovska V. N. Karazin Kharkiv National University
  • Krystyna Kryvonos V. N. Karazin Kharkiv National University

Keywords:

CRISPR/CAS9 method, children, adolescents, socially significant diseases

Abstract

The article is devoted to the application of the CRISPR/CAS9 method in fundamental research, diagnosis and therapy of socially significant diseases in children and adolescents of Ukraine. An analytical review of publications related to this method was conducted in electronic databases of medical publications, the most common socially significant nosological forms were described, and some ways of solving existing problems were proposed

References

CDBI/INF (2000) [cdbi/plénier/docs publics/inf/travaux préparatoires Conv. (2000.1)]. Available from: https://www.coe.int/t/dg3/healthbioethic/texts_and_documents/CDBI-INF%282000%291PrepConv.pdf

Geraghty J. Adenomatous polyposis coli and translational medicine. Lancet. 1996 Aug 17;348(9025):422. DOI: 10.1016/S0140-6736(05)64535-7.

Pinchuk I, Yachnik Y, Kopchak O, Avetisyan K, Gasparyan K, Ghazaryan G. [et al.] The Implementation of the WHO Mental Health Gap Intervention Guide (mhGAP-IG) in Ukraine, Armenia, Georgia and Kyrgyz Republic. Int. J. Environ. Res. Public Health..;18(9):4391. Available from: 2021 Apr 21. DOI: 10.3390/ijerph18094391. PMID: 33918985; PMCID: PMC8122418.

Hyland P, Vallières F, Shevlin M, Karatzias T, Ben-Ezra M, McElroy E, Vang ML, Lorberg B, Martsenkovskyi D. Psychological consequences of war in Ukraine: assessing changes in mental health among Ukrainian parents. Psychol. Med. [Internet].:1-3. Available from: 2023 Apr 5. DOI: 10.1017/S0033291723000818. Epub. ahead of print. PMID: 37016786.

Christopher P. Austin. Opportunities and challenges in translational science. National Center for Advancing Translational Sciences. Bethesda, MD, USA: NCATS; 12 April 2021. Clin. Transl. Sci. 2021;14:1629–1647. Available from: https://ncats. nih.gov/translation/spectrum.

Supporting the Transformative Impact of Research Infrastructures on European Research. 2020. Available from: https://ec.europa.eu/info/sites/info/files/research_and_innovation/strategy_on_research_and_innovation/documents/ec_rtd_transformative-impact-ris-on-euro-research.pdf

Краснов В. В. Зміни в системі підготовки медичних кадрів в умовах реформування сфери охорони здоров’я / В. В. Краснов, О. Є. Січкоріз, О. С. Щербінська // Актуальні питання якості медичної освіти : матеріали XIV Всеукр. наук.-практ. конф. з міжнар. участю (з дистанційним під’єднанням ВМ(Ф)НЗ України за допомогою відеоконференц-зв’язку) (Тернопіль, 18–19 трав. 2017 р.). Тернопіль, 2017. Т. 1. с. 121-122.

Лінчевський О. В. Шляхи реформування системи вищої медичної освіти в Україні в сучасних умовах / О. В. Лінчевський, В. М. Черненко, Ю. С. П’ятницький, І. Є. Булах // Актуальні питання якості медичної освіти : матеріали XIV Всеукр. наук.- практ. конф. з міжнар. участю (з дистанційним під’єднанням ВМ(Ф)НЗ України за допомогою відеоконференц-зв’язку) (Тернопіль, 18–19 трав. 2017 р.). Тернопіль, 2017. Т. 1. С. 3-5.

Закон України «Про інноваційну діяльність» (Відомості Верховної Ради України (ВВР), 2002, № 36, ст.266, редакція від 12.04.2022). Доступний за посиланням: https://zakon.rada.gov.ua/go/40-15.

National Center for Advancing Translational Sciences. Bethesda, MD, USA: NCATS; [updated 2016. Dec. 22; cited 2016 Dec.]. Translational Science Spectrum; [about 2 screens]. Available from: https://ncats.nih.gov/translation/spectrum.

Trochim W, Kane C, Graham MJ, Pincus HA. Evaluating translational research: a process marker model. Clin. Transl. Sci. 2011 Jun;4(3):153-62. DOI: 10.1111/j.1752-8062.2011.00291.x.

NCATS Programs & Initiatives. National Center for Advancing Translational Sciences. 2015-03-16. Retrieved 2021-09-28.

Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, et al. A prudent path forward for genomic engineering and germline gene modification. Science. 2015. Apr. 3;348(6230):36–3. DOI: 10.1126/science.aab1028.

Knapton S. British scientists granted permission to genetically modify human embryos. The Daily Telegraph. 2016. Feb. 1. https://www.telegraph.co.uk/science/2016/03/12/british-scientists-granted-permission-to-genetically-modify-huma/

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjzpIy89aSJAxUm7AIHHW4iGpQQFnoECBYQAQ&url=https%3A%2F%2Fwww.bbc.com%2Fukrainian%2Fnews-54446554&usg=AOvVaw2Qvsc9j62r1GN_f6mxYoIk&opi=89978449

Li, J.; Li, Y.; Pawlik, K.M.; Napierala, J.S.; Napierala, M. A CRISPR-Cas9, Cre-lox, and Flp-FRT cascade strategy for the precise and efficient integration of exogenous DNA into cellular genomes. CRISPR J. 2020, 3, 470–486.

Bukhari, B.; Naveed, M.; Makhdoom, S.I.; Jabeen, K.; Asif, M.F.; Batool, H.; Ahmed, N.; Chan, Y.Y. A comparison between organic and inorganic nanoparticles: Prime nanoparticles for tumor curation. Nano 2021, 16, 2130011.

Ahmad, A.; Baig, A.A.; Hussain, M.; Saeed, M.U.; Bilal, M.; Ahmed, N.; Chopra, H.; Hassan, M.; Rachamalla, M.; Putnala, S.K. Narrative on Hydrogen Therapy and its Clinical Applications: Safety and Efficacy. Curr. Pharm. Des. 2022, 28, 2519–2537.

Bharathkumar, N.; Sunil, A.; Meera, P.; Aksah, S.; Kannan, M.; Saravanan, K.M.; Anand, T. CRISPR/Cas-Based modifications for therapeutic applications: A review. Mol. Biotechnol. 2022, 64, 355–372.

Kulshrestha, S.; Chauhan, S.; Singh, G. With CRISPR/CAS9, Fighting against the Dark Empire of Diseases. Guident 2022, 15, 29–32.

Khan, Z.; Ali, Z.; Khan, A.A.; Sattar, T.; Zeshan, A.; Saboor, T.; Binyamin, B. History and Classification of CRISPR/Cas System. In The CRISPR/Cas Tool Kit for Genome Editing; Springer: Berlin/Heidelberg, Germany, 2022; pp. 29–52.

Shams, F.; Bayat, H.; Mohammadian, O.; Mahboudi, S.; Vahidnezhad, H.; Soosanabadi, M.; Rahimpour, A. Advance trends in targeting homology-directed repair for accurate gene editing: An inclusive review of small molecules and modified CRISPR-Cas9 systems. BioImpacts 2022, 12, 371.

Shaun D. Tyler, Geoffrey A. Peters, Alberto Severini, Complete genome sequence of cercopithecine herpesvirus 2 (SA8) and comparison with other simplexviruses, Virology, Volume 331, Issue 2, 2005, P. 429-440. DOI: 10.1016/j.virol.2004.09.042.

Davison, A.J. Herpesviruses: General Features; Mahy, B.W.J., Van Regenmortel, M.H.V., Eds.; Academic Press: Oxford, UK, 2008; pp. 430–436. ISBN 978-0-12-374410-4. DOI:10.1002/9780470688618.taw0231.

Heming JD, Conway JF, Homa FL. Herpesvirus Capsid Assembly and DNA Packaging. Adv Anat Embryol Cell Biol. 2017;223:119-142. DOI: 10.1007/978-3-319-53168-7_6. PMID: 28528442; PMCID: PMC5548147.

Bennett N.J. Pediatric mononucleosis and Epstein-Barr virus infection / N.J. Bennett. 2012. http://emedicine.medscape.com/article/963894.

Cunha B.A. Infectious mononucleosis / В.А. Cunha // Medscape. 2013. http://emedicine.medscape.com/article/222040-overview.

Van Cleemput J, Koyuncu OO, Laval K, Engel EA, Enquist LW. CRISPR/Cas9-Constructed Pseudorabies Virus Mutants Reveal the Importance of UL13 in Alphaherpesvirus Escape from Genome Silencing. J Virol. 2021 Feb 24;95(6):e02286-20. DOI: 10.1128/JVI.02286-20. PMID: 33361431; PMCID: PMC8094956.

Dai H, Wu J, Yang H, Guo Y, Di H, Gao M, Wang J. Construction of BHV-1 UL41 Defective Virus Using the CRISPR/Cas9 System and Analysis of Viral Replication Properties. Front Cell Infect Microbiol. 2022 Jul 8;12:942987. DOI: 10.3389/fcimb.2022.942987. PMID: 35873151; PMCID: PMC9304932.

Dinoso JB, Rabi SA, Blankson JN, Gama L, Mankowski JL, Siliciano RF, Zink MC, Clements JE. A simian immunodeficiency virus-infected macaque model to study viral reservoirs that persist during highly active antiretroviral therapy. J Virol. 2009 Sep;83(18):9247-57. DOI: 10.1128/JVI.00840-09. Epub. 2009 Jul 1. PMID: 19570871; PMCID: PMC2738256.

Liu CY, Jin M, Guo H, Zhao HZ, Hou LN, Yang Y, Wen YJ, Wang FX. Concurrent Gene Insertion, Deletion, and Inversion during the Construction of a Novel Attenuated BoHV-1 Using CRISPR/Cas9 Genome Editing. Vet Sci. 2022 Mar 30;9(4):166. DOI: 10.3390/vetsci9040166. PMID: 35448664; PMCID: PMC9029512.

Mancuso P, Chen C, Kaminski R, Gordon J, Liao S, Robinson JA, Smith MD, Liu H, Sariyer IK, Sariyer R, Peterson TA, Donadoni M, Williams JB, Siddiqui S, Bunnell BA, Ling B, MacLean AG, Burdo TH, Khalili K. CRISPR based editing of SIV proviral DNA in ART treated non-human primates. Nat. Commun. 2020. Nov. 27;11(1):6065. DOI: 10.1038/s41467-020-19821-7. PMID: 33247091; PMCID: PMC7695718.

Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci. 2022 May 12;23(10):5399. DOI: 10.3390/ijms23105399. PMID: 35628210; PMCID: PMC9140762.

Nasrallah A, Sulpice E, Kobaisi F, Gidrol X, Rachidi W. CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells. 2022. Nov. 15;11(22):3615. DOI: 10.3390/cells11223615. PMID: 36429042; PMCID: PMC9688409.

Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol. 2024 May 15;15:1393974. DOI: 10.3389/fmicb.2024.1393974. PMID: 38812680; PMCID: PMC11133543.

Jackson, C.B., Farzan, M., Chen, B. et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 23, 3–20 (2022). DOI: 10.1038/s41580-021-00418-x.

Ebrahimi S, Khanbabaei H, Abbasi S, Fani M, Soltani S, Zandi M, Najafimemar Z. CRISPR-Cas System: A Promising Diagnostic Tool for Covid-19. Avicenna J Med Biotechnol. 2022. Jan-Mar;14(1):3-9. DOI: 10.18502/ajmb.v14i1.8165. PMID: 35509363; PMCID: PMC9017467.

Li J, Zhang K, Lin G, Li J. CRISPR-Cas system: A promising tool for rapid detection of SARS-CoV-2 variants. J Med Virol. 2024. Jan;96(1):e29356. DOI: 10.1002/jmv.29356. PMID: 38180237.

Zhan Y, Li XP, Yin JY. COVID-19 one year later: a retrospect of CRISPR-Cas system in combating COVID-19. Int J Biol Sci. 2021 May 13;17(8):2080-2088. DOI: 10.7150/ijbs.60655. eCollection 2021.PMID: 34131407.

Yin L, Man S, Ye S, Liu G, Ma L. CRISPR-Cas based virus detection: Recent advances and perspectives. Biosens Bioelectron. 2021. Dec. 1;193:113541. DOI: 10.1016/j.bios.2021.113541. Epub. 2021 Aug 8. PMID: 34418634; PMCID: PMC8349459.

Hu F, Liu Y, Zhao S, Zhang Z, Li X, Peng N, Jiang Z. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosens Bioelectron. 2022. Apr. 15;202:113994. DOI: 10.1016/j.bios.2022.113994. Epub. 2022 Jan 13. PMID: 35042129; PMCID: PMC8755463.

Dalton T, Doubrovina E, Pankov D, Reynolds R, Scholze H, Selvakumar A, et al. Epigenetic reprogramming sensitizes immunologically silent EBV+ lymphomas to virus-directed immunotherapy. Blood. (2020). 135:1870–81. DOI: 10.1182/blood.2019004126.

Chavez, M., Chen, X., Finn, P.B. et al. Advances in CRISPR therapeutics. Nat Rev Nephrol 19, 9–22 (2023). DOI: 10.1038/s41581-022-00636-2.

Yin D, Ling S, Wang D, Dai Y, Jiang H, Zhou X, Paludan SR, Hong J, Cai Y. Targeting herpes simplex virus with CRISPR-Cas9 cures herpetic stromal keratitis in mice. Nat Biotechnol. 2021. May;39(5):567-577. DOI: 10.1038/s41587-020-00781-8. Epub. 2021 Jan 11. PMID: 33432198; PMCID: PMC7611178.

Uddin F, Rudin CM, Sen T. CRISPR Gene Therapy: Applications, Limitations, and Implications for the Future. Front Oncol. 2020. Aug. 7;10:1387. DOI: 10.3389/fonc.2020.01387. PMID: 32850447; PMCID: PMC7427626.

De A, Biswas AR. Nanotechnology and Computational tool based study of CRISPR/Cas-9 research in Biomedical Engineering. J Nano Res Adv Mater Polym. Sci. 2020;1:6–1.

Shumega AR, Pavlov YI, Chirinskaite AV, Rubel AA, Inge-Vechtomov SG, Stepchenkova EI. CRISPR/Cas9 as a Mutagenic Factor. International Journal of Molecular Sciences. 2024; 25(2):823. DOI: 10.3390/ijms25020823.

Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell. 2022 Jan 20;82(2):348-388. DOI: 10.1016/j.molcel.2021.12.026. PMID: 35063100; PMCID: PMC8887926.

Hunt JMT, Samson CA, Rand AD, Sheppard HM. Unintended CRISPR-Cas9 editing outcomes: a review of the detection and prevalence of structural variants generated by gene-editing in human cells. Hum Genet. 2023 Jun;142(6):705-720. DOI: 10.1007/s00439-023-02561-1. Epub 2023 Apr 24. PMID: 37093294; PMCID: PMC10182114.

Chan T, Trueger NS, Roland D, Thoma B. Evidence-based medicine in the era of social media: scholarly engagement through participation and online interaction. Can J. Emerg. Med. 2018;20:3–8. DOI: 10.1017/cem.2016.407.

Fan S. Everything You Need to Know About Superstar CRISPR Prime Editing. https://singularityhub.com/2019/11/05/everything-you-need-to-know-about-superstar-crispr-prime-editing/

Published

2025-12-29

Issue

Section

Abstract